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An x-star network is an information network which consists of centers with connections among them-
selves, and different type attributes linking to these centers. As x-star networks become ubiquitous,
extracting knowledge from x-star networks has become an important task. Similarity search in x-star
network aims to find the centers similar to a given query center, which has numerous applications
including collaborative filtering, community mining and web search. Although existing methods yield
promising similar results, such as SimRank and P-Rank, they are not applicable for massive x-star net-
works. In this paper, we propose a structural-based similarity measure, NetSim, towards efficiently com-
puting similarity between centers in an x-star network. The similarity between attributes is computed in
the pre-processing stage by the expected meeting probability over attribute network that is extracted
from the whole structure of x-star network. The similarity between centers is computed online according
to the attribute similarities based on the intuition that similar centers are linked with similar attributes.
NetSim requires less time and space cost than existing methods since the scale of attribute network is
significantly smaller than the whole x-star network. For supporting fast online query processing, we
develop a pruning algorithm by building a pruning index, which prunes candidate centers that are not
promising. Extensive experiments demonstrate the effectiveness and efficiency of our method through
comparing with the state-of-the-art measures.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Information networks are becoming ubiquitous and form the
critical components of the information infrastructure. A network
with x-star network schema (called x-star network) is an informa-
tion network which consists of centers with connections among
themselves, and different type attributes linking to these centers.
X-star network is the extension of star network (Sun, Yu, & Han,
2009) with considering the connections among centers. Typical
centers are products, papers, people and the like. There are large
amount of examples of x-star networks, for example, bibliographic
network which consists of papers with citations, and each paper
contains several terms, is published in one venue, is written by sev-
eral authors; product co-purchasing network among products with
description that a product belongs to several categories, contains
several terms; social network among users with personal informa-
tion that consists of interest, department and profession. With x-
star networks becoming diverse and complex, there is a need for
designing algorithmic tools and developing applications to exploit
the underlying structure in the data.

Similarity search focuses on finding the most similar objects to
a given object. For the x-star network, we are particularly inter-
ested in providing a similarity search functions for searching the
similar objects of center type. For example, in a bibliographic net-
work, a user may be interested in the most similar paper for a given
paper; in the product co-purchasing network, a user may be inter-
ested in searching for the most similar products for a given
product.

As one of the most important aspects in information network
analysis, similarity search in x-star network has numerous real
applications. For example, recommender system over product co-
purchasing network, which recommends the most similar products
to the product chosen by a user; purchasing relationship predic-
tion, which predicts each purchasing relationship as the link
between a user and a product similar to the chosen product. These
applications usually require an effective and trustworthy similarity
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search function to answer the question ‘‘Which centers are most
similar to this one?’’.

For satisfying the above requirement, a great number of similar-
ity measures are devoted (Ganesan, Garcia-Molina, & Widom,
2003; Jeh & Widom, 2002; Lin, King, & Lyu, 2006; Xi et al., 2005;
Zhao, Han, & Sun, 2009; Zhou, Cheng, & Yu, 2009), which can be
divided into two broad categories: (1) content-based similarity
measures treat each object as a bag of items or as a vector of word
weights (Ganesan et al., 2003); and (2) structural-based similarity
measures, consider object-to-object relationships expressed in
terms of links (Jeh & Widom, 2002; Lin et al., 2006; Xi et al.,
2005; Zhao et al., 2009; Zhou et al., 2009). Comparative studies
on different similarity measures demonstrate that structural-based
similarity measures produce systematically better correlation with
human judgements compared to the content-based ones
(Maguitman, Menczer, Erdinc, Roinestad, & Vespignani, 2006).
From this perspective, it is reasonable to assume that structural-
based similarity measure is worth thoroughly exploring for tack-
ling similarity search problem in x-star networks.

Many structural-based similarity measures can be found in pre-
vious work, such as SimRank (Jeh & Widom, 2002), P-Rank (Zhao
et al., 2009) and SimFusion (Xi et al., 2005). These methods com-
pute similarities by utilizing the global information of information
networks. The similarity between two objects is usually defined
recursively with respect to a ‘‘random surfer’’ model and is under
the iterative computation framework, based on this, the indirect
links between objects are explored for discovering the underlying
relationships. These methods are applicable to any domain with
object-to-object relationships and can provide a good way for
effectively measuring object similarities in information networks.

Unfortunately, although existing methods yield promising sim-
ilar results, they are not applicable for large networks due to their
high time and space complexity. When applying these methods to
x-star networks, large similarity matrix need to be maintained for
storing similarities among different type objects, the matrix would
become full after just a few iterations, and then the storage and
efficiency problems would be run into with x-star networks
becoming massive. For optimizing similarity computation, some
optimization techniques have been proposed (Li et al., 2010a;
Lizorkin, Velikhov, Grinev, & Turdakov, 2008, 2010; Yu, Lin,
Zhang, Chang, & Pei, 2013; Zhao, Xiao, Lin, Liu, & Zhang,2013). How-
ever, these optimization techniques are particularly inefficient in
practice since the whole similarity matrix among different type
objects need to be maintained as well.

The above illustrates the significance of similarity search and
discusses the drawback of existing methods, which motivates our
research. In this paper, we study the top-k similarity search prob-
lem in x-star networks, which aims to reduce the time and space
cost of similarity search. For tackling this problem, two main chal-
lenges need to be overcome. First, although it is critical to reduce
the cost in pre-processing stage, the high time and space complex-
ity of similarity computation would become an obstacle for evalu-
ating center similarities. Second, the process of on-line query
processing without pre-computing the whole similarity matrix
involves expensive operations to calculate the similarity between
the query and each candidate (Lee, Lakshmanan, & Yu, 2012; Li,
Liu, Yu, He, & Du, 2010b), which would increase the response time
significantly.

Our contributions are based on these challenges. For improving
the efficiency of similarity computation, we propose a
structural-based similarity measure NetSim based on the intuition
that ‘‘similar centers are usually linked with similar attributes’’. We
compute the similarity between centers according to attribute sim-
ilarities which are computed off-line over each attribute network.
The attribute network is built according to global structure infor-
mation of x-star network, and each attribute network contains
only the attributes of one attribute type, which is in fact a small
portion of the whole x-star network, hence the total similarity
computation over different type attribute networks would be
evidently decreased. The global structure is utilized by NetSim as
well since the global structure information is integrated into
attribute networks.

For supporting fast online query processing, we also develop a
pruning algorithm NetSim-pruning by building a pruning index.
The candidates that are not promising are pruned by setting the
user-controlled thresholds. Based on the pruning index, the execu-
tion time of query processing is significantly decreased without
pre-computing the whole similarity matrix among all the objects.
Extensive experiments on real datasets demonstrate the effective-
ness and efficiency of our approach through comparing with the
state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 gives the notations and problem
definition. In Section 4, relations and links are weighed. Section 5
builds the attribute network and computes attribute similarity.
Section 6 defines NetSim similarity, proposes NetSim-baseline
and NetSim-pruning. Experimental studies are reported in Section
7. Section 8 concludes this paper and discusses the future work.
2. Related work

Similarity measures are common standards for measuring the
closeness of different entities, which are crucial and required by
considerable amount of applications include clustering, recom-
mender system, proximity query processing, community detection
and other research fields. There are considerable amount of litera-
ture on structure-based similarity measures in the previous work.

Co-citation (Small, 1973) and bibliographic coupling (Kessler,
1963) are two early noteworthy methods from bibliometrics fields.
Co-citation scheme measures similarity between two papers p and
q based on the number of papers which cite both p and q, while
Bibliographic coupling measures similarity based on the number
of papers cited by both p and q. Amsler (1972) proposed another
approach which fuses both Co-citation and bibliographic coupling
for similarity computation by considering both in- and out-links,
and the relative weight of in-link and out-link directions by tuning
a factor a 2 ½0;1�. These approaches are efficient for similarity com-
putation due to their simple computation procedure, by which the
sparsity of real networks can be utilized for reducing computation
cost. However, these approaches use only the local structure infor-
mation for computing similarities, the valuable underlying rela-
tionships can not be considered, which would neglect much
latent similar objects due to the sparseness of real networks.

Computing similarity recursively based on structure has also
been explored in several existing methods, where the global struc-
ture information of information networks is utilized for computing
similarity. SimRank is one of the most renowned structural-based
similarity measures, invented by Jeh and Widom (2002), which
has been widely used in various fields (Fogaras & Rácz, 2005;
Pan, Yang, Faloutsos, & Duygulu, 2004; Yin, Han, & Yu, 2006). The
similarity between objects is defined as the expected distance for
two random surfers when they walk along the network backwards,
based on the intuition that ‘‘objects are similar if they are refer-
enced by similar objects’’. As mentioned by Jeh and Widom
(2002), the weakness of SimRank is the limited information prob-
lem since it uses only in-link directions only for similarity compu-
tation, and hence the similarity conveyed from out-links directions
would be neglected. To overcome the limited information problem
of SimRank, Zhao et al. (2009) proposed P-Rank which enriches
SimRank by jointly encoding both in- and out-link relationships
into structural similarity computation. The intuition behind P-Rank
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Fig. 1. Bibliographic information network.
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is that ‘‘two objects are similar if (1) they are referenced by similar
objects; and (2) they reference similar objects’’. P-Rank solves the
limited information problem effectively, and achieves much better
results. In fact, Co-citation, Bibliographic coupling, Amsler and
SimRank can be considered as special cases of P-Rank as men-
tioned by Zhao et al. (2009). PageSim (Lin et al., 2006) is a link-
based similarity based on PageRank score propagation through link
paths, which is capable of measuring similarity between web
pages. Contrast to SimRank and P-Rank, PageSim can measure sim-
ilarity between any two web pages at the case of meeting when
walking along the paths of different length, whereas SimRank can-
not, since SimRank considers only the meetings of equal path
length at each iterations.

SimFusion (Xi et al., 2005) uses Unified Relationship Matrix
(URM) to represent the heterogeneous objects and the interrela-
tionships among these web objects, where the relation importance
is defined manually. The similarity matrix is computed iteratively
over URM, which helps overcome the data sparseness problem
and detect the latent relationships among heterogeneous data
objects. In fact, SimFusion can be transformed into SimRank easily
with minor modification, which is also a special case of P-Rank
(Cai, Zhang, Ding, & Chakravarthy, 2010). Compared to SimRank
and P-Rank, SimFusion addresses the heterogeneity of information
networks by effectively combining relationships from multiple het-
erogeneous data sources. SA (Cheng, Zhou, & Yu, 2011; Zhou et al.,
2009) is a random walk-based method for clustering over x-star
networks by considering graph topological structure and the
objects properties. Compared to SimFusion, the weights of different
type links are defined by proposing iterative clustering process.

A problem of the above similarity measures is that, due to the
high computational complexity, high space and time cost would
be required. When computing similarities, the matrices among dif-
ferent type objects need to be maintained, and the efficiency prob-
lem would be run into with network becoming massive. As a result,
the high space and time complexity for computing similarities
among different type objects would become an obstacle for apply-
ing these measures to large information networks.

Different from the existing similarity measures, NetSim com-
putes only the attribute similarity matrix for each attribute type
in pre-processing stage, the whole matrix among different type
objects is not maintained. NetSim pre-compute only the similarity
matrix for each attribute type, and only t small matrices need to be
maintained, where t is the number of attribute type in a given x-
star network. Besides, the global structure information of the
whole x-star networks can be utilized as well, since the global
information of x-star networks is integrated while building the
attribute network.

Some optimization techniques on SimRank have been devel-
oped recently. Lizorkin et al. (2008, 2010) optimized SimRank by
essential node pairs, partial sums and threshold-sieved. Li et al.
(2010a) introduced a no-iterative SimRank computation method
in dynamic networks, which rewrite SimRank to into a non-
iterative form based on the Kronecker product and vectorization
operators. Zhao et al. (2013) proposed partition-based approach
to tackle the efficiency problem of SimRank, by dividing the data
graphs into variable-size non-overlapping partitions. Yu et al.
(2013) proposed a revised version of SimRank which resolves the
counter-intuitive zero-similarity issues while inheriting merits of
the basic SimRank philosophy, and leveraged a novel clustering
strategy for optimizing the SimRank computation.

Nevertheless, these optimization techniques still require huge
matrix to maintain the whole similarities among different type
objects, which are particularly inefficient in practice and can not
be applied to large x-star networks. Compared to these optimiza-
tion techniques, NetSim is in fact a general similarity search frame-
work. NetSim is not conflict with the existing optimization
techniques, since these optimization techniques can be easily inte-
grated into NetSim for speeding up similarity computation over
attribute networks (as shown in Section 7).
3. Notations and problem definition

3.1. Notations

We first introduce the definitions of information network and
network schema, which are defined by Sun et al. (2009) and Sun,
Han, Yan, Yu, and Wu (2011).

Definition 1 (Information network). An information network is
defined as a directed graph G ¼ ðV ; E;WÞ, with an object type
mapping function U : V ! K and a link type mapping function
W : E! R. An object v 2 V belongs to one particular object type,
i.e., UðvÞ 2 K, and a link e 2 E belongs to particular relation, i.e.,
WðeÞ 2 R. The weight of link eðu;vÞ 2 E is denoted as wðu;vÞ 2W .

The object set of Xi type is denoted by VXi
. The in- and out-

neighbor sets of type Xi of object v are denoted by IiðvÞ and
OiðvÞ, respectively. Information networks are divided into two
types: (1) heterogeneous information network if jKj > 1 or
jRj > 1; and (2) homogeneous information network for other-
wise. The relation from object type Xi to Xj is denoted as XiXj.
The link set of XiXj type is denoted by EXiXj

.

Definition 2 (Network schema). The network schema is a template
for information network G ¼ ðV ; E;WÞ, with an object type
mapping function U : V ! K and a link type mapping function
W : E! R, which is a directed graph over object types K, denoted
as SG ¼ ðK;RÞ.

A network schema is a template for instancing a information
network, which determines the characteristics of network struc-
ture. Next we give the definition of x-star network schema by
extending star network schema (Sun et al., 2009).

Definition 3 (X-star network schema). The x-star network schema
is a template for x-star network G ¼ ðV ; E;WÞ with t þ 1 object
types, which is defined as SG ¼ ðK;RÞ, where K ¼ [t

i¼0fXig;
R ¼ fX0X0g[t

i¼1fX0Xi;XiX0g. X0 and Xiði > 0Þ are center type and
attribute type respectively.
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Objects of X0 type and Xi type are center type objects (also
called center) and attribute type objects (also called attribute)
respectively. For symbol Xi, we hold i > 0 if there is no special note.
Relation X0X0 is a special relation that contains two semantics, for
example, relation between papers may be cite or cited by relation,
for simplicity, we consider only one type of them. Fig. 1(a) shows
the schema of bibliographic network, which forms an x-star net-
work schema, where ‘‘Paper’’ is center type which is denoted by
XP , ‘‘Author’’, ‘‘Term’’ and ‘‘Venue’’ are attribute types, which are
denoted by XA; XT and XV respectively. The object type set is
denoted by fXP ;XA;XT ;XVg, and the relation set is denoted by
fXPXP ;XPXA;XPXV ;XPXT ;XAXP ;XV XP;XT XPg. The semantic of relation
XPXP is cite, XPXA is written by while XAXP is write, XPXV is published
in while XV XP is publish, and other relations can be explained sim-
ilarly. One instance of this schema is shown in Fig. 1(b), where
‘‘8974’’ and ‘‘3458’’ represents two papers, which are center type
objects, other objects are attributes of different types, such as
‘‘SimRank’’ and ‘‘Similarity’’ are XT type objects, ‘‘J. Widom’’ and
‘‘P. Zhao’’ are XA type objects, and ‘‘SIGKDD’’ and ‘‘CIKM’’ are XV

type objects. There are different type links among these different
type objects, such as the link of XPXT type between ‘‘8974’’
and ‘‘SimRank’’, the link of XPXA type between ‘‘3458’’ and
‘‘J. Widom’’.

Definition 4 (Attribute network). An attribute network for
Xiði > 0Þ type is defined as a directed graph Gi ¼ ðVGi

; EGi
;WGi

Þ
with network schema SGi

¼ ðK;RÞ, where K ¼ fXig and R ¼ fXiXig.
An attribute network consists of attributes of one type and the

links among themselves. The algorithm for building attribute
network is given in Section 5.

3.2. Problem definition

Under the definition of NetSim (defined in subSection 6.1), we
formally define our top-k similarity search problem, which is
described as follows.

Definition 5 (Top-k similarity search under NetSim). Given an
x-star network G ¼ ðV ; E;WÞ, the top-k similarity search for a
given center u is to find k most similar centers ranking with

similarities descending, such that Slðu; vÞP Slðu;v 0Þ for v in the

returning list and v 0 not, where Sl is the similarity function under
NetSim of path length l.
4. Defining weights of links

Roughly, the weight between two objects is defined as the link
frequency between them, however, the relation importance may
be very different since the relations are diverse and independent
in heterogeneous network. Intuitively, in relation XiXj, if the size
of set VXj

is bigger, then the objects of Xj type are more informative
for the objects of Xi type, and vice versa. For example, in relation
Rpublished in : paper ! venue, the venues are not so informative for
papers since one venue usually publishes many papers from many
fields, such as EDBT usually receives papers from more than 30 dif-
ferent research topics, and there is a fact that the number of the
venues is usually small; and in relation Rwritten by : paper ! author,
the authors are more informative than venues since the research
interest of one author is not too broad, such as we found that only
6 research topics are shown in Jiawei Han’s home page, and there is
a fact that the number of the authors is bigger than venues. For-
mally, the importance of relation XiXj is defined as the probability
for generating an object of Xi type over all the objects of different
types, which is formalized as:
rwðXiXjÞ ¼
jVXj
jP

Xk2K
P

XiXk2RjVXk
j ð1Þ

This formula can applied to any type network schema besides x-
star schema for measuring relation importance. In this paper, we
focus on only the x-star network schema.

For link eðu;vÞ of XiXj type, if u has more out-neighbors of Xj

type, then link eðu;vÞ is weaker, and vice versa. For example, in
relation Rcontained in : term! paper, the link from a frequently used
term (such as data) to a paper is weaker than from a rarely used
term (such as P-Rank), since rarely used term is more informative
than the frequently used. Formally, the weight of eðu;vÞ 2 EXiXj

is
defined as:

wðu; vÞ ¼ rwðXiXjÞ
Nðu;vÞP

x2OjðuÞNðu; xÞ
ð2Þ

where Nðu;vÞ is the frequency of u that links to v. The idea of penal-
izing the node with high degree in Eq. (2) is similar with that of set-
ting a universal sink node (Sarkar & Moore, 2010; Satuluri &
Parthasarathy, 2011), these methods are designed for homogenous
networks, and our proposed method can be used for defining the
weights in heterogenous networks.

5. Building attribute network and computing attribute
similarity

5.1. Building attribute network.

Algorithm 1. Building attribute network

Input:
X-star network GðV ; E;WÞ;

Output:
Attribute network GiðVGi

; EGi
;WGi

Þ;
1: Initialize EGi

; WGi
as ;, and VGi

be VXi
;

2: For u 2 VX0 do
3: For v 2 O0ðuÞ do
4: For ða; bÞ 2 IiðuÞ � OiðvÞ do
5: if eða; bÞ 2 EGi

then
6: wða; bÞ  wða; bÞ þwða;uÞwðu;vÞwðv; bÞ;
7: else
8: EGi

 EGi
[ eða; bÞ;

9: wða; bÞ  wða;uÞwðu;vÞwðv ; bÞ;
10: WGi

 WGi
[wða; bÞ;

11: end if
12: end for
13: end for
14: For ða; bÞ 2 IiðuÞ � OiðuÞ do
15: if e 2 EGi

then
16: wða; bÞ  wða; bÞ þwða;uÞwðu; bÞ;
17: else
18: EGi

 EGi
[ eða; bÞ;

19: wða; bÞ  wða;uÞwðu; bÞ;
20: WGi

 WGi
[wða; bÞ;

21: end if
22: end for
23: end for

We build the attribute network by extracting the relationship
among attributes from the whole x-star network, where different
relationships among centers and attributes are considered. The
weight of each link means the transition probability from one attri-
bute to another through the paths over x-star network. Like the
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random surfer model, high transition probability implicates that a
surfer starts from one attribute can easily arrive at another one. For
modeling such transition probability, the links among centers and
the co-links among attributes are considered. Formally, when
building attribute network GiðVGi

; EGi
;WGi

Þ for Xi type, we rashly
assume that the paths from one object to anther are always inde-
pendent, and define the weight of eða; bÞ 2 EGi

as the transition
probability that a surfer starts at a 2 VXi

and ends at b 2 VXi

through the instances of combined relation RXi!X0!Xi
or

RXi!X0!X0!Xi
. The weight of eða; bÞ is defined as:

wða; bÞ ¼
X

u2O0ðaÞ\I0ðbÞ
wða;uÞwðu; bÞ

þ
X

ðu;vÞ2O0ðaÞ�I0ðbÞ
wða;uÞwðu;vÞwðv; bÞ ð3Þ

Algorithm 1 shows the pseudo-code for building attribute net-
work. From line 3 to 13, the weight between two attributes is mod-
ified according to links of X0X0 relation between centers they are
linking to; and from line 14 to 22, the weight is modified by con-
sidering the co-links of them. Specifically, given an x-star network
G, the attribute network Gi of Xi type is built as: for each u 2 VX0 :
(1) we get each v 2 O0ðuÞ, and for each ða; bÞ 2 IiðuÞ � OiðvÞ, if
e 2 EGi

we update wða; bÞ by accumulating wða;uÞwðu;vÞwðv ; bÞ,
otherwise we build a new edge eða; bÞ and assign wða;uÞwðu;vÞ
wðv ; bÞ to its weight wða; bÞ; (2) for each ða; bÞ 2 IiðuÞ � OiðuÞ, if
e 2 EGi

, we update wða; bÞ by accumulating wða;uÞwðu; bÞ, other-
wise we build a new edge eða; bÞ and assign wða;uÞwðu; bÞ to its
weight wða; bÞ. The time cost of this algorithm is OðjVX0 j
ðdO0 dIi

dOi
þ dIi

dOi
ÞÞ, where dOi

and dIi
are the average out- and in-

degree correspond to Xi attribute type respectively. In the worst
case, each object points to all other objects of the network, the time

cost is OðjVX0 j
2jVXi

j2Þ. Many real networks obey a power-law
degree distribution (Faloutsos, Faloutsos, & Faloutsos, 1999), in this
case, the average cost is OðjVX0 jÞ.

5.2. Computing attribute similarity

Similarities among attributes can be computed by any existing
methods on homogeneous networks. In this paper, we compute
attribute similarity based on SimRank, where the transition proba-
bility is defined by considering the weights of links. The transition
probability from a to b over Gi is formalized as

Piða; bÞ ¼ wða;bÞP
x2OGi

ðaÞwða;xÞ
if eða; bÞ 2 EGi

, otherwise Piða; bÞ ¼ 0. Ml
iða; bÞ

denotes the similarity between a and b. For l ¼ 0, we define
M0

i ða; bÞ ¼ 1 if a ¼ b, and otherwise Mi;0ða; bÞ ¼ 0. For l – 0, we

define Ml
iða; bÞ ¼ 1 if a ¼ b, otherwise:

Ml
iða; bÞ ¼ c

X
x2OGi

ðaÞ

X
y2OGi

ðbÞ
Piða; xÞPiðb; yÞMl�1

i ðx; yÞ ð4Þ

where c 2 ð0;1Þ is the decay factor. For attribute type Xi, the time
cost for computing attribute similarity matrices of different types

is derived as Oðld2
Gi
jVXi
j2Þ, where dGi

is the average degree in Gi.

Lemma 1. Given attributes a; b 2 VXi
, decay factor c 2 ð0;1Þ and

path length l, we hold that Ml
iða; bÞ ¼ Ml

iðb; aÞ.

From Eq. (4) and the property of SimRank (Jeh & Widom, 2002),
we can derive Ml

iða; bÞ ¼ Ml
iðb; aÞ.

Lemma 2. Given attributes a; b 2 VXi
, decay factor c 2 ð0;1Þ and

path length l, we hold that 0 6 Ml
iða; bÞ 6 Mlþ1

i ða; bÞ 6 1.

Similarly, from Eq. (4) and the property of SimRank (Jeh &
Widom, 2002), we can also derive 0 6 Ml

iða; bÞ 6 Mlþ1
i ða; bÞ 6 1.
6. Query processing over X-star network

6.1. Center similarity under NetSim

Center similarity is computed based on the mentioned intuition
that similar centers are linked with similar attributes. We firstly re-
formalize the link importance and the relation importance without
considering relationship among centers, i.e., w�ðu; xÞ ¼

wðu;xÞP
p2Oi ðuÞ

wðu;pÞ
; rw�ðX0XiÞ ¼ rwðX0XiÞPt

j¼1
rwðX0XjÞ

. The similarity between u and

v is defined as Slðu;vÞ ¼ 1 if u ¼ v , otherwise:

Slðu;vÞ ¼
Xt

i¼1

rw�ðX0XiÞSl
iðu; vÞ ð5Þ

where

Sl
iðu;vÞ ¼

X
x2OiðuÞ

X
y2OiðvÞ

w�ðu; xÞw�ðv ; yÞMl
iðx; yÞ ð6Þ

In Eq. (6), Sl
iðu;vÞ is the similarity between u and v corresponds

to Xi type attributes without considering other types. We use
rw�ðX0XiÞ in Eq. (5) to balance the similarity contributed by each
Xi type, since different type attributes make very different contri-
bution for computing center similarity. For example, venues (such
as EDBT) usually make less contribution than authors (such as Jia-
wei Han) for computing paper similarity since the research topics
of venues are more broader than authors.

Theorem 1. Given centers u; v 2 VX0 , decay factor c 2 ð0;1Þ and
path length l, we hold that Slðu;vÞ ¼ Slðv ;uÞ.

From Eq. (5) and Lemma 1, we can easily get Slðu;vÞ ¼ Slðv;uÞ.
Theorem 1 demonstrates the symmetry property of NetSim.

Theorem 2. Given centers u; v 2 VX0 , decay factor c 2 ð0;1Þ and
path length l, we hold that 0 6 Slðu; vÞ 6 Slþ1ðu;vÞ 6 1.
Proof. According to Lemma 2, we get 0 6 Ml
iða; bÞ 6 Mlþ1

i ða; bÞ 6 1,
combine with Eq. (6), we can derive:

(1) Sl
iðu;vÞP 0, by Eq. (5), we have Slðu;vÞP 0;

(2) Sl
iðu;vÞ 6

P
x2OiðuÞ

P
y2OiðvÞw

�ðu; xÞw�ðv ; yÞ ¼ 1, by Eq. (5), we

have Slðu;vÞ ¼
Pt

i¼1rw�ðX0XiÞSl
iðu; vÞ 6

Pt
i¼1rw�ðX0XiÞ ¼ 1,

replace l by lþ 1, we get Slþ1ðu;vÞ 6 1;

(3) Slþ1
i ðu;vÞ � Sl

iðu;vÞ ¼
Pt

i¼1rw�ðX0XiÞ Slþ1
i ðu;vÞ � Sl

iðu;vÞ
� �

and

from Mlþ1
i ðx;yÞ �Mlþ1

i ðx;yÞP 0, we get Slþ1
i ðu;vÞ�

Sl
iðu;vÞP 0, then we have Slþ1ðu;vÞ � Slðu;vÞP 0.

Thus, 0 6 Slþ1ðu;vÞ � Slðu;vÞ 6 1. h

Theorem 2 shows the monotonicity property of NetSim that the
iterative NetSim is non-decreasing with path length increasing.

6.2. NetSim-baseline

For a given query center, the straightforward baseline method
for finding top-k similar centers is: firstly find the most k
similar centers by computing similarity between query and each
candidate using Eq. (5), then sort and return them. There are
jVX0 j candidates need to be checked. The total time cost is

O jVX0 j
Pt

i¼1jdOi
j2 þ k

� �
þ CðkÞ

� �
, where CðkÞ is the time cost for

sorting k objects. Only the attribute similarities need to be pre-

computed and stored, of which the space cost is O
Pt

i¼1jVXi
j2

� �
.
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In SimRank, similarities among all type objects are pre-com-
puted, we only retrieve the similarity between query and each can-
didate from similarity matrix, then the time cost is
OðjVX0 jð1þ kÞ þ CðkÞÞ. The similarities are computed based on an
unified matrix of the whole network, of which the space cost is

O
Pt

i¼1jVXi
j

� �2
� �

.

6.3. NetSim-pruning

In the baseline algorithm, two factors that increase the compu-
tational cost are involved. First, the more candidates to check, the
more time the algorithm take; and second, when computing the
similarity between the query and each candidate, the more attri-
butes link to the candidate, the more time the algorithm take.
Therefore, the intuition to speed up the search is to prune unprom-
ising candidates and unimportant attributes.

6.3.1. Pruning-index
We propose an index-based pruning method, in which the

closeness between each attribute and each center is pre-computed
and stored in an index, called pruning-index, denoted by D. One
example of pruning-index is shown as Fig. 2, where ATid denotes
the attribute type ID, Aid denotes attribute ID, Cid denotes center
ID and hCid;Closenessi denotes the closeness from Cid to Aid.

We define the pruning-index by using nested set

De;l ¼ [t
i¼1fD

ei ;l
i g corresponds to the pruning-index D, where

e ¼ [t
i¼1feig is the set of the closeness thresholds for different

attribute types which satisfies ei P 0 and
Pt

i¼0ei 6 1 for different

i. Of which, Dei ;l
i ¼ Dei ;l

i ðxÞjx 2 VXi

n o
corresponds to ATid set, where

Dei ;l
i ðxÞ ¼ v ;Dei ;l

i ðx;vÞ
D E���v 2 VX0 ^ Dei ;l

i ðx; vÞ – 0
n o

corresponds to

sets of hCid;Closenessi. v ;Dei ;l
i ðx;vÞ

D E
is a tuple that corresponds

to hCid;Closenessi. Dei ;l
i ðx;vÞ measures the closeness from x to v,

which is defined as:

Dei ;l
i ðx;vÞ ¼

X
y2OiðvÞ

rw�ðX0XiÞw�ðv ; yÞMl
iðx; yÞ ð7Þ

if right-hand side of Eq. (7) is bigger than ei, otherwise Dei ;l
i ðx;vÞ ¼ 0,

where ei is the closeness threshold for Xi type attributes. Then Eq.
(5) can be defined approximately as Sl

eðu; vÞ ¼ 1 if u ¼ v , otherwise:

Sl
eðu; vÞ ¼

Xt

i¼1

X
x2OiðuÞ

w�ðu; xÞDei ;l
i ðx; vÞ ð8Þ

In fact, the informative attributes closed to one center are usually
not too many, for example, a paper focus on similarity search topic
may have higher closeness to terms SimRank, P-Rank, etc., but have
lower closeness to term physics, sports, etc. Lower closeness attri-
butes usually make little contribution for similarity computation
and decrease computation efficiency. In order to decrease searching
cost, we tune ei to limit the closed Xi type attribute set size corre-
<7781,0.001>5905 <643
<6142,0.010>5980 <305

<9971,0.002>5994 <716

1
2

<6658,0.002>667 <743

<7798,0.016>790 <665
<5384,0.019>793 <539

ATid Set Aid SetSets of < Cid, Closenes

Aid Set Sets of <Cid, Closenes

Fig. 2. Example of
sponds to centers, by which too low closeness attributes can be
pruned, and hence the cost for computing center similarity can be
decreased. We compare the query u with only the centers in set
De

i ðxÞ for its all type attributes x, therefore, the unpromising candi-
dates can also be pruned by turning closeness thresholds. Note that
only the elements corresponding to non-zero closeness are stored.

For each attribute type Xi, we can compute the closeness
between the centers and the attributes using Eq. (7), and store
them in the pruning index, the time cost is OðdOi

Þ. And there are
jVX0kVXi

j items need to be computed. So the time cost is
OðdOi

jVX0kVXi
jÞ. The time cost for building pruning index is the time

for computing the closeness between all centers and attributes,
which can be derived as O

Pt
i¼1ðdOi

jVX0kVXi
jÞ

� �
.

Lemma 3. Given center v 2 VX0 , attribute x 2 VXi
, path length l,

decay factor c 2 ð0;1Þ and closeness threshold set e ¼ [t
i¼1feig, we

hold that 0 6 Dei ;l
i ðx;vÞ 6 Dei ;lþ1

i ðx;vÞ 6 rw�ðX0XiÞ.
Proof. By Eq. (7), we can derive:

(1) If D0;l
i ðx; vÞ 6 ei, we get Dei ;l

i ðx;vÞ ¼ 0, otherwise, Dei ;l
i ðx; vÞ >

0, which gives Dei ;l
i ðx; vÞP 0.

(2) If D0;l
i ðx;vÞ > ei and D0;lþ1

i ðx;vÞ > ei, we have
7,0.002
8,0.003

6,0.001

9,0.005

8,0.003
5,0.019

s>

s>

pruning
Dei ;lþ1
i ðx;vÞ � Dei ;l

i ðx; vÞ ¼
X

y2OiðvÞ
rw�ðX0XiÞw�ðv ; yÞ Mlþ1

i ðx; yÞ
�

�Ml
iðx; yÞ

�
;

by Lemma 2, we get Dei ;lþ1
i ðx;vÞ � Dei ;l

i ðx;vÞP 0, which gives

Dei ;l
i ðx;vÞ 6 Dei ;lþ1

i ðx;vÞ;
If D0;l

i ðx;vÞ > ei and D0;lþ1
i ðx;vÞ 6 ei, we can get

Mlþ1
i ðx; yÞ < Ml

iðx; yÞ, which conflicts with Lemma 2;

If D0;l
i ðx;vÞ 6 ei and D0;lþ1

i ðx; vÞ < ei, we have Dei ;lþ1
i ðx;vÞ�

Dei ;l
i ðx;vÞ ¼ 0� 0 ¼ 0, which gives Dei ;l

i ðx;vÞ ¼ Dei ;lþ1
i ðx; vÞ;

If D0;l
i ðx; vÞ 6 ei and D0;lþ1

i ðx;vÞ > ei, we have

Dei ;lþ1
i ðx;vÞ �Dei ;l

i ðx;vÞ ¼
X

y2OiðvÞ
rw�ðX0XiÞw�ðv ;yÞMl

iðx;yÞ � 0 P 0;

which gives Dei ;l
i ðx;vÞ 6 Dei ;lþ1

i ðx;vÞ.
Then we get Dei ;l

i ðx;vÞ 6 Dei ;lþ1
i ðx; vÞ.
(3) If Dl
iðx;vÞ 6 ei, we have Dei ;lþ1

i ðx;vÞ ¼ 0;
If D0;lþ1

i ðx;vÞ > ei, we have
Dei ;lþ1
i ðx;vÞ ¼

X
y2OiðvÞ

rw�ðX0XiÞw�ðv ;yÞsimlþ1
i ðx;yÞ

6

X
y2OiðvÞ

rw�ðX0XiÞw�ðv ;yÞ ¼
X

y2OiðvÞ
rw�ðX0XiÞw�ðv ;yÞ

¼ rw�ðX0XiÞ
X

y2OiðvÞ
w�ðv ;yÞ ¼ rw�ðX0XiÞ:
> ...
> ...

> ...

<9859,0.001>
<7133,0.003>

<6813,0.001>

> ...

> ...
> ...

<6530,0.001>

<7668,0.006>
<7150,0.007>

-index.
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Then we get Dei ;lþ1
i ðx;vÞ 6 rw�ðX0XiÞ.

Thus, 0 6 Dei ;l
i ðx;vÞ 6 Dei ;lþ1

i ðx;vÞ 6 rw�ðX0XiÞ. h
Algorithm 2. NetSim-pruning algorithm.

Input:

Query u of X0 type, GðV ; E;WÞ; k and De;l;
Output:

Top-k most similar sorted centers;
1: Initialize QðC;SÞ by setting C and S as ;;
2: For Xi 2 K do
3: For x 2 OiðuÞ do

4: For v 2 v 0 v 0;Dei ;l
i ðx;v

0Þ
D E

2 Dei ;l
i ðxÞ

���
n o

do

5: if v 2 C then

6: SðvÞ  SðvÞ þw�ðu; xÞDei ;l
i ðx;vÞ;

7: else

8: SðvÞ  w�ðu; xÞDei ;l
i ðx;vÞ;

9: C  C [ fvg;
10: S  S [ fSðvÞg;
11: end if
12: end for
13: end for
14: end for
15: return GetSortedCenterðk;QÞ;

6.3.2. NetSim-pruning algorithm
Algorithm 2 shows the online query processing of NetSim-prun-

ing. For a given query center u, we firstly initialize QðC;SÞ by set-
ting C and S as ;, where C is the candidate set, and S is the set of
similarities between query and candidates. For attribute type Xi,

we find x 2 OiðuÞ, and get Dei ;l
i ðx;vÞ from Dei ðxÞ for candidate v cor-

responds to x. The similarity between u and v is updated by accu-

mulating w�ðv; xÞDei ;l
i ðx;vÞ. GetSortedCenterðk;QÞ is the function for

getting the k most similar centers using Q, the basic process of
which is that firstly get the k most similar centers from C according
to their corresponding similarities in S, then sort and return them.

The time cost of Algorithm 2 is O
Pt

i¼1

P
x2OiðuÞl

ei
i ðxÞ þ kjCj þ CðkÞ

� �
,

where lei
i ðxÞ is the size of Dei ;l

i ðxÞ.
In the NetSim-pruning, for a query u, we first find its corre-

sponding attributes in the pruning index De;l. For Xi attribute type,
the candidate set corresponds to attribute x 2 VXi

is

CiðxÞ ¼ v 0 v 0;Dei ;l
i ðx;v 0Þ

D E
2 Dei ;l

i ðxÞ
���

n o
, and hence the candidate set

corresponds to OiðuÞ is Ci ¼ [x2OiðuÞCiðxÞ, then the candidate set is
formalized as C¼[t

i¼1Ci¼[t
i¼1[x2OiðuÞCiðxÞ¼[t

i¼1[x2OiðuÞ

v 0 v 0;Dei ;l
i ðx;v 0Þ

D E
2Dei ;l

i ðxÞ
���

n o
. When giving a higher ei for each

Xi2K, the accumulation operations for computing similarities
would become fewer, which makes the time cost lower. In this
case, the size of CiðxÞ would become smaller, which gives Ci a
downward trend, and hence the size of C would have a downward
trend as well. Then the time cost for choosing the k centers from C
would become lower as well. Note that the size of CiðxÞ is equal to

the size of Dei ;l
i ðxÞ.

Theorem 3. Given centers u; v 2 VX0 , decay factor c 2 ð0;1Þ, path
length l and closeness threshold set e ¼ [t

i¼1feig, we hold that

0 6 Slðu;vÞ � Sl
eðu;vÞ 6

Pt
i¼1ei .
Proof. By Eqs. (5), (7) and (8), we can derive that Slðu;vÞ�
Sl
eðu;vÞ ¼

Pt
i¼1

P
x2OiðuÞw

�ðu;xÞD0
i ðx;vÞ�

Pt
i¼1

P
x2OiðuÞw

�ðu;xÞDei ;l
i ðx;vÞ
¼
Pt

i¼1

P
x2OiðuÞw

�ðu;xÞðD0
i ðx;vÞ�Dei ;l

i ðx;vÞÞ, by Eq. (7), if D0
i ðx;vÞ> ei

we derive D0
i ðx;vÞ�Dei ;l

i ðx;vÞ ¼ 0, otherwise 0<D0
i ðx;vÞ�Dei ;l

i ðx;vÞ
6 ei, then we have 06D0

i ðx;vÞ�Dei ;l
i ðx;vÞ6 ei, which gives Slðu;vÞ

�Sl
eðu;vÞP

Pt
i¼1

P
x2OiðuÞw

�ðu;xÞ �0¼ 0, and Slðu;vÞ� Sl
eðu;vÞ6Pt

i¼1

P
x2OiðuÞ w�ðu;xÞei ¼

Pt
i¼1ei

P
x2OiðuÞw

�ðu;xÞ ¼
Pt

i¼1ei.

Thus, 0 6 Slðu;vÞ � Sl
eðu;vÞ 6

Pt
i¼1ei. h

Theorem 3 gives the maximal difference between NetSim-base-
line and NetSim-pruning. The maximal accuracy loss of NetSim-
pruning is the sum of the different type thresholds.

Theorem 4. Given centers u; v 2 VX0 , decay factor c 2 ð0;1Þ, path
length l and closeness threshold set e ¼ [t

i¼1feig, we hold that

Sl
eðv ;uÞ � Sl

eðu;vÞ
���

��� 6Pt
i¼1ei.
Proof. By Theorem 3, we have 0 6 Slðu;vÞ � Sl
eðu;vÞ 6

Pt
i¼1ei, and

0 6 Slðv ;uÞ � Sl
eðv ;uÞ 6

Pt
i¼1ei, which gives �

Pt
i¼1ei 6 Sl

eðv ;uÞ�
Slðv ;uÞ 6 0, then 0þ �

Pt
i¼1ei

� �
6 Slðu;vÞ � Sl

eðu;vÞ
� �

þ Sl
eðv ;uÞ�

�

Slðv ;uÞÞ 6
Pt

i¼1ei þ 0. By Theorem 1, we have Slðu;vÞ ¼ Slðv ;uÞ,
we get �

Pt
i¼1ei 6 Sl

eðv;uÞ � Sl
eðu;vÞ 6

Pt
i¼1ei, which gives

jSl
eðv;uÞ � Sl

eðu;vÞj 6
Pt

i¼1ei. h

Theorem 4 shows that the similarity under NetSim-pruning is
not symmetrical and gives the maximal difference between

Sl
eðu;vÞ and Sl

eðu;vÞ. Note that Slðu;vÞ ¼ Sl
eðu;vÞ if ei ¼ 0 for all

Xi 2 K.

Theorem 5. Given centers u; v 2 VX0 , decay factor c 2 ð0;1Þ, path
length l and closeness threshold set e ¼ [t

i¼1feig, we hold 0 6
Sl
eðu; vÞ 6 Slþ1

e ðu;vÞ 6 1.
Proof. From Eq. (8), we can derive Sl
eðu;vÞ ¼ Slþ1

e ðu;vÞ ¼ 1 for

u ¼ v , and if u – v , we have Dei ;l
i ðx; vÞP 0, which gives

Sl
eðu;vÞ ¼

Pt
i¼1
P

x2OiðuÞw
�ðu; xÞDei ;l

i ðx;vÞP 0, by Lemma 3, we

have 0 6 Dei ;l
i ðx; vÞ 6 Dei ;lþ1

i ðx;vÞ 6 rw�ðX0XiÞ, which gives

0 6 Sl
eðu;vÞ ¼

Xt

i¼1

X
x2OiðuÞ

w�ðu; xÞDei ;l
i ðx;vÞ

6

Xt

i¼1

X
x2OiðuÞ

w�ðu; xÞDei ;lþ1
i ðx;vÞ ¼ Slþ1

e ðu; vÞ

6

Xt

i¼1

X
x2OiðuÞ

w�ðu; xÞrw�ðX0XiÞ

¼
Xt

i¼1

rw�ðX0XiÞ
X

x2OiðuÞ
w�ðu; xÞ ¼ 1:

Therefore, 0 6 Sl
eðu;vÞ 6 Slþ1

e ðu;vÞ 6 1. h

Theorem 5 shows the monotonicity property of NetSim-pruning
that the iterative NetSim-pruning is non-decreasing with path
length increasing as well as NetSim-baseline.

7. Experimental study

Experiments are done on a 2.39 GHz Intel(R) Xeon(R) CPU with
64 GB main memory, running Windows Server 2008 R2 Enterprise.
All algorithms are implemented in C++ and compiled using VS
2010.



Fig. 3. Effectiveness comparison on DBLP.

Table 1
Queries that are picked from DBLP and Amazon.

DBLP Amazon

1 Software-reliability engineering: technology for the 1990s Alpha teach yourself grammar and style in 24 hours (Book)
2 ARIAL: rapid prototyping for mixed and parallel platforms Clinical handbook of psychotropic drugs (Book)
3 Everyday computer graphics Spanish for life textbook with atajo CD-ROM (Book)
4 Movement Problems for 2-dimensional linkages Negotiating skills for managers (Book)
5 Floating search methods in feature selection Distributed systems: principles and paradigms (Book)
6 Genetic local search algorithms for the travelling salesman problem Managerial psychology: managing behavior in organizations (Book)
7 Software engineering in Asia A first course in stochastic processes (Book)
8 Optimal detection of sequence similarity by local alignment Principles of operations management (Book)
9 Teaching data base systems using date and computing surveys First course in Fourier analysis, A (Book)
10 Kernel methods for pattern analysis Distributed systems (2nd Edition) (Book)
11 People, organizations, and process improvement Research design in clinical psychology (4th Edition) (Book)
12 A Stochastic approach to parsing Behavior and medicine (Book)
13 Semantics and conversations for an agent communication language Understanding Shakespeare: Hamlet (Video)
14 Generalizing the notion of schema in genetic algorithms Lyric language Spanish/English combo2 (Video)
15 A data flow processor array system: design and analysis Handbook of home health nursing procedures (Book)
16 A sublinear time approximation scheme for clustering in metric spaces Chiropractic technique: principles and procedures (Book)
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7.1. Setup

7.1.1. Datasets

� DBLP We extract a bibliographic network from DBLP citation
dataset1 (Tang, Yao, Zhang, & Zhang, 2010; Tang et al., 2011;
Tang et al., 2008). It contains 314,753 papers with 2,376,644 cita-
tions, 2942 venues and 180,322 authors. After removing stop
words in the papers’ titles, we get around 49,688 terms appearing
more than once. We consider the paper as center that is published
in one venue, contains several terms. We choose 13,837 objects
with 68,984 different type links, specifically, there are 5952
papers, 6929 terms and 956 venues.
� Amazon Co-purchased network dataset is extracted from Ama-

zon dataset2 (Leskovec, Adamic, & Huberman, 2007). There are
355,601 products with 2,359,584 co-purchased relationships,
36,591 categories, and 42,890 terms appearing more than once.
We consider the product as the center that contains several terms
and belongs to some categories. We choose 17,570 objects with
94,112 different type links, specifically, there are 5819 products,
7267 terms and 4484 categories.

7.1.2. Comparison methods and evaluation
NetSim is compared with SimRank, P-Rank and SimFusion. All

the comparison methods are implemented strictly following their
1 <http://www.arnetminer.org/citation>.
2 <http://snap.stanford.edu/data/amazon-meta.html>.
papers. The decay factor c is set as 0.8. Unnecessary connections
that can decrease the evaluation accuracy are removed from attri-
bute networks. On DBLP, we set term type closeness threshold eT as
0.003 and venue type closeness threshold eV as 0.002; and on Ama-
zon, we set term type closeness threshold eT as 0.003 and category
type closeness threshold eC as 0.0015.

We randomly pick 16 query centers from both DBLP and Ama-
zon datasets, all of them are shown in Table 1. On DBLP, we pick 16
papers, we list only the titles of them; and on Amazon, we pick 16
products, and we list their titles and the groups they belong to in
the followed brackets.

We use Normalized Discounted Cumulative Gain (NDCG) to
evaluate the effectiveness of similarity ranking lists (Järvelin &
Kekäläinen, 2002). The NDCG value at the kth position (NDCG@k)
of the ranking result is computed according to the similarity levels
which are set as: 2 (highly relevant), 1 (marginally relevant), and 0
(irrelevant). And the similarity levels are labeled by 8 persons in a
double-blind fashion.

Efficiency comparison includes the running time for pre-com-
puting similarity matrices and execution time of online query
processing. As mentioned, all optimization methods for fast
computing SimRank can be applied to NetSim for fast pre-com-
puting attribute similarity matrices by Eq. (4). For supporting
our opinion, we use one optimization technique of SimRank
(Lizorkin et al., 2010) to speed up NetSim, and test the time cost
of NetSim, SimRank, optimized NetSim (Opt-NetSim) and opti-
mized SimRank (Opt-SimRank), more details are shown in Sec-
tion 7.5.

http://www.arnetminer.org/citation
http://snap.stanford.edu/data/amazon-meta.html


Fig. 4. Effectiveness comparison on Amazon.

Table 2
Case study on DBLP for query of title: People, Organizations, and Process Improvement.

Rank SimRank P-Rank SimFusion NetSim-baseline NetSim-pruning

1 People, organizations,
and process
improvement

People, organizations,
and process
improvement

Porting OpenVMS from VAX to alpha AXP People, organizations,
and process
improvement

People, organizations,
and process
improvement

2 Software process
improvement at
Raytheon

Software process
improvement at
Raytheon

HCI for older and disabled people in the Queen
Mother Research Centre at Dundee University,
Scotland

Software process
improvement at
Raytheon

Software process
improvement at
Raytheon

3 Software process
improvement at
Hughes aircraft

Top-down vs. bottom-up
process improvement

NEATER2: a PL/I source statement reformatter Top-down vs. bottom-up
process improvement

Top-down vs. bottom-up
process improvement

4 Top-down vs. bottom-
up process
improvement

Software process
improvement at Hughes
aircraft

The panopticon and the performance arena:
hci reaches within

Software process
improvement at Hughes
aircraft

Software process
improvement at Hughes
aircraft

5 A parallel-
programming process
model

Software process
improvement: blueprints
versus recipes

Alpha AXP architecture Software process
improvement: blueprints
versus recipes

Software process
improvement: blueprints
versus recipes
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7.2. Effectiveness

7.2.1. NDCG Value
Fig. 3(a) shows the NDCG@20 value versus path length l on

Amazon. We observe that NetSim performs better than other
methods. The NDCG value becomes stable as l increases on each
method except SimFusion, which suggests the convergence of
these methods. The result on NetSim is consistent with Theorems
2 and 5. SimFusion shows a significant downward NDCG value
with l increasing, this is because SimFusion is not a convergent
algorithm (Xi et al., 2005). The NDCG value of NetSim-baseline
and NetSim-pruning are close, which is consistent with Theorem
Table 3
Case study on Amazon for query of title: First Course in Fourier Analysis, A (Book).

Rank SimRank P-Rank SimFusion

1 First course in fourier
analysis, A (Book)

First course in fourier
analysis, A (Book)

The topology of fibre bu
(Book)

2 Fourier analysis and
boundary value
problems (Book)

Fourier analysis and
boundary value
problems (Book)

Riemannian geometry
(Graduate texts in
mathematics) (Book)

3 The Fourier transform &
Its applications (Book)

The Fourier transform &
Its applications (Book)

Fundamentals of Fourie
transform infrared
spectroscopy (Book)

4 An introduction to
harmonic analysis
(Book)

An introduction to
harmonic analysis
(Book)

Fourier transform infrar
spectrometry (Book)

5 Elementary classical
analysis (Book)

Complex analysis in one
variable (Book)

Differential geometry o
curves and surfaces (Bo
3. Fig. 3(b) shows the NDCG value versus rank k, where l ¼ 10.
From k ¼ 2 to 8, there are downward NDCG value except SimFu-
sion, this is because each center are similar to itself, so the value
of NDCG value at k ¼ 1 is 1, which affects the value from k ¼ 2 to 8.

Fig. 4(a) shows the NDCG@20 value change versus l on Amazon;
and Fig. 4(b) shows the NDCG value change versus k, where l ¼ 10.
P-Rank gives the best ranking quality. NDCG value of NetSim-base-
line and NetSim-pruning is lower than P-Rank and higher than
other methods, which is different from the result on DBLP, this is
because different methods may be suit for different datasets,
which is common for similarity search algorithms. In Fig. 4(a),
the NDCG value of SimRank does not increase strictly with l
NetSim-baseline NetSim-pruning

ndles First course in Fourier analysis, A
(Book)

First course in Fourier analysis, A
(Book)

Fourier analysis and boundary
value problems (Book)

Fourier analysis and boundary
value problems (Book)

r The Fourier transform & Its
applications (Book)

The Fourier transform & Its
applications (Book)

ed Functions of one complex variable
II (Graduate texts in mathematics)
(Book)

Functions of one complex variable
II (Graduate texts in mathematics)
(Book)

f
ok)

Real and complex analysis (Higher
mathematics series) (Book)

Real and complex analysis (Higher
mathematics series) (Book)



(a) DBLP (b) Amazon

Fig. 5. Execution time of online query processing.

Table 4
Pre-computation time (min).

Dataset SimRank P-Rank SimFusion NetSim

DBLP 177.78 369.06 162.85 106.42
Amazon 356.99 681.56 353.77 149.58
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increasing, this is probably because the ranking lists are not 100%
coherent with data.

7.2.2. Case study
Some case studies have been done on both DBLP and Amazon.

Although the judgement of similarity might be subjective and dif-
ficult for human beings, we still find some interesting results by
making use of different algorithms. On DBLP, the top 5 similar
papers returned for the given query of paper titled ‘‘People, Orga-
nizations, and Process Improvement’’ by different algorithms are
shown in Table 2. This query is a paper related with ‘‘software
development’’. From which we found that most papers in the
returned lists are highly relevant to the given query except the list
of SimFusion. For example, ‘‘First Course in Fourier Analysis, A
(Book)’’ is same to the given query, which is similar to itself; ‘‘Soft-
ware Process Improvement At Raytheon’’, ‘‘Software Process
Improvement at Hughes Aircraft’’ and ‘‘Software Process Improve-
ment: Blueprints versus Recipes’’ are concerned with ‘‘Software
Process Improvement’’, which is the sub-topic of ‘‘software
development’’, and they are obviously two similar topics; ‘‘A
Parallel-Programming Process Model’’ is a paper on the topic
(a) DBLP

Fig. 6. Candidate set size
‘‘Parallel-Programming’’, which is an important software develop-
ment model, therefore, the paper is also relevant to the given
query; ‘‘Top-Down vs. Bottom-Up Process Improvement’’ is con-
cerned with ‘‘Top-Down’’ and ‘‘Bottom-Up’’, which is relevant to
the topic ‘‘software development’’ as well. We also found that lists
returned by NetSim-baseline and NetSim-pruning are same,
besides, which is consistent with the comparisons on NDCG value
in subsubSection 7.2.1.

Table 3 shows the case study on Amazon for the given query of
a book product titled ‘‘First Course in Fourier Analysis, A’’. This
query is a book concerned with ‘‘Fourier analysis’’. We found that
most books in the returned lists are highly relevant to the given
query as well. ‘‘First Course in Fourier Analysis, A’’ is certainly sim-
ilar to itself; ‘‘The Fourier Transform & Its Applications’’, ‘‘Fourier
Analysis and Boundary Value Problems’’, ‘‘Fundamentals of Fourier
Transform Infrared Spectroscopy’’ are all concerned with the topic
‘‘Fourier analysis’’ or ‘‘Fourier Transform’’, which are obviously
similar to ‘‘Fourier analysis’’, therefore, these books are similar to
the given query; ‘‘An Introduction to Harmonic Analysis’’ is on
the topic ‘‘Harmonic Analysis’’, which is in fact the extended form
of topic ‘‘Fourier analysis’’, therefore, this book is similar to the
given paper as well; Similar cases can be found in other results
as well, such as ‘‘Fourier Transform Infrared Spectrometry’’ and
‘‘Differential Geometry of Curves and Surfaces’’.

From the case studies on Amazon as well as DBLP, we conclude
that NetSim can also really reflect the reality to single out similar
centers as well as the state-of-the-art methods. We also conclude
that NetSim-pruning is effective as well as NetSim-baseline.
(b) Amazon

v.s. NetSim-pruning.



Fig. 7. Attribute closeness threshold v.s. NetSim-pruning on DBLP.
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7.3. Efficiency

7.3.1. Comparing NetSim with other methods
Fig. 5(a) and (b) show the execution time of online query pro-

cessing with k increasing on DBLP and Amazon, where l ¼ 10. Gen-
erally, the time cost becomes high as k increases. The lines of
SimRank, P-Rank, Simfusion are almost overlapped, this is because
the size of their similarity matrix is almost same. NetSim-baseline
is the most time-consuming method, and NetSim-pruning
improves the efficiency evidently. These results demonstrate that
NetSim-pruning is more efficient than other methods.

Table 4 shows the recorded running time for pre-computing
similarity matrices. On both of the two datasets, P-Rank is the most
time-consuming, since it considers out- and in-links for computing
similarity, which decreases the efficiency. On DBLP, the time cost of
NetSim are 60.00% of SimRank, 28.83% of P-Rank and 65.35% of
SimFusion respectively; and on Amazon are 41:90%;21:95% and
42.28% respectively.
7.3.2. NetSim-pruning efficiency
Fig. 6(a) and (b) show the candidate set size v.s. NetSim-pruning

time cost on DBLP and Amazon respectively. We can observe that
more candidates give more time cost. On Amazon, time cost is
almost linear to the candidate set size, and such phenomenon is
not so evident on DBLP.

Fig. 7(a) shows the time cost on varying term type closeness
threshold eT on DBLP, where venue type closeness threshold eV is
set as 0.001. The downward curves on different k show the
decrease on time cost as eT increases, this is because lower
Fig. 8. Attribute closeness threshold
closeness centers correspond to the XT type attributes are pruned.
Fig. 7(b) shows the time cost on varying eV , where eT is set as 0.001.
The downward trend of the curves is not so evident as above, this is
because there are only 956 venues in our test dataset, the venue
type closeness threshold between 0.0005 and 0.005 is not high
enough for pruning the unpromising candidates.

Fig. 8(a) shows the time cost on varying term type closeness
threshold eT on Amazon, where category type closeness threshold
eC is set as 0.001. The time cost on different k decreases as eT

increases as well. Fig. 8(b) shows the time cost on varying eC ,
where eT is set as 0.001. The downward trend of the curves is
not so evident as Fig. 8(a), which can be explained similar to
Fig. 7(b).

We also recorded the time cost for building pruning-index on
DBLP and Amazon respectively. The time cost is 31,687 ms on
DBLP, and on Amazon is 33,248 ms. From which we can see that
the time cost on both of the two datasets is less than 1 min. The
result demonstrate that the off-line process time cost of the Net-
Sim-pruning is lower.
7.4. Similarity matrix size

Fig. 9(a) shows the size of non-zero similarity matrices of differ-
ent methods on varying l on DBLP. We find that the matrix size
becomes bigger as l increases, and suggests a stable state finally.
At l ¼ 10, there are 98.55% non-zero elements among the full
matrix of NetSim, and 100% of other methods. The matrix size of
SimRank, P-Rank and SimFusion are close. The matrix size of Net-
Sim is 25.18% of all other methods. The similarity matrix size
v.s. NetSim-pruning on Amazon.



Fig. 11. Similarity matrix size v.s. # of objects.

Fig. 10. Pre-computation time v.s. # of objects on Optimized SimRank and NetSim.

Fig. 9. Similarity matrix size on varying l.
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change on Amazon is shown in Fig. 9(b). At l ¼ 10, there are 98.32%
non-zero elements among the full matrix of NetSim, and 100% of
other methods. The matrix size of NetSim is 23.62% of other
methods.

7.5. Test on increasing objects

Next we test the performance of NetSim by comparing with
SimRank on increasing objects, where l ¼ 10 and k ¼ 50. Fig. 10
shows the running time comparison for pre-computing similarity
matrices in off-line stage on varying object number on DBLP and
Amazon. From which we can find that: (1) NetSim gives evident
efficiency improvement with objects increasing by comparing with
SimRank, and the improvement is more evident on Amazon; (2)
the time cost of Opt-NetSim is lower than NetSim with objects
increasing, and the time cost Opt-SimRank is lower than SimRank,
which shows the optimization technique can really applied to both
NetSim and SimRank for improving the computation efficiency;
and (3) the time cost of Opt-NetSim is lower than Opt-SimRank
with objects increasing, which shows the optimized NetSim is
more efficient compared with the optimized SimRank.

The similarity matrix size on varying object number is shown in
Fig. 11. On both of the two datasets, the matrix size of NetSim is
evidently smaller than SimRank since the number of the corre-



Fig. 12. Query execution time v.s. # of objects.

M. Zhang et al. / Expert Systems with Applications 42 (2015) 699–712 711
sponding attributes of all types is significantly less than the num-
ber of all type objects in the whole x-star network. Fig. 12 shows
the execution time of online query processing of NetSim-pruning
and SimRank with objects increasing. On both DBLP and Amazon,
the NetSim-pruning performs more efficient than SimRank. And
on Amazon, the efficiency improvement is more evident, and the
time increment of NetSim-pruning is very small with objects
increasing. The optimization technique of NetSim and SimRank
reduces only the pre-computation time cost, and have no affects
on the matrix size and query processing time, so the repeated
results are not shown here.
8. Conclusion and future work

The research presented in this paper tackled the problem of
similarity search in x-star networks. A structural-based similarity
measure NetSim is proposed for efficiently computing similarity
between centers. Compared to traditional methods, the computa-
tion cost would be decreased significantly, since NetSim computes
center similarities on-line according to the attribute similarities
which are computed in the off-line stage over small attribute net-
works. Besides, the global structure information is utilized as well
since the global structure information is integrated into attribute
networks, and then the effectiveness of NetSim and the state-of-
the-art methods are close. In order to support fast query process-
ing, we developed a pruning algorithm NetSim-pruning, by which
the unpromising candidates can be pruned by setting the user-con-
trolled thresholds.

The strengths of this paper can be summarized as follows.
Firstly, NetSim requires less time and space cost than existing
methods. This is because the scale of attribute network is signifi-
cantly smaller than the whole x-star network, the total cost of sim-
ilarity computation over the attribute networks would be
significantly decreased. Secondly, the pruning algorithm is efficient
for fast query processing, since the unpromising candidates can be
pruned by setting thresholds. Thirdly, our approach is in fact a gen-
eral framework on similarity search, since the existing optimiza-
tion techniques on similarity computation can be easily taken
into attribute similarity computation process for further speeding
up NetSim.

This work has theoretical and practical implications. In theory,
this is the first attempt for a solution to the efficiency problem of
similarity search in information networks according to attribute
similarity matrices that have not been previously explored. Our
proposed NetSim is a new similarity search framework, which
can be easily combined with the existing optimization techniques,
and we hope that it will help begin a fruitful discussion among
scholars. As far as practical implications are concerned, NetSim
can be easily applied to many real applications, including query
expansion, clustering and web search engine. NetSim provides an
effective and efficient evaluation of underlying similarity, which
can satisfy the requirements of above applications and map human
intuition under different real settings of information networks. By
NetSim, the system performance would be improved significantly.

Our approach also has some limitations which are summarized
below. Firstly, our approach focuses on reducing the computational
cost of similarity search in static information network, and the case
of dynamic information networks is not considered. Secondly,
although this paper considers the relation types for computing
similarity, the semantic of relations is not explored thoroughly.
Finally, NetSim is proposed for measuring similarity in x-star net-
works, the information networks beyond x-star network schema
are not addressed.

Accordingly, in future work, we will focus on the followed
aspects to continue our study. First is to study problem of incre-
ment computation on NetSim for adapting dynamic information
networks, which may directly benefit from increment computation
methods (Li et al., 2010a; Yu & Lin, 2013). Secondly, we will give
much attention on semantic of relationships among objects and
for developing a new semantic similarity measure by fusing Net-
Sim and existing computation techniques on semantic similarity
(Sánchez & Batet, 2013; Sánchez, Batet, Isern, & Valls, 2012).
Finally, we plan to extend NetSim to the information networks
beyond x-star network schema for handling more complex data.
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